Padatrapesium tidak beraturan di atas, keempat sisinya yaitu AB, BC, CD, dan DA memiliki panjang yang berbeda. Basis yaitu DC dan AB sejajar satu sama lain tetapi memiliki panjang yang berbeda. Berdasarkan gambar bangun trapesium di atas, maka dapat dipastikan bahwa trapesium memiliki luas dan keliling.
Kelas 9 SMPKESEBANGUNAN DAN KONGRUENSISegitiga-segitiga sebangunPada gambar di atas, trapesium ABCD sama kaki AD=BC. Dari pernyataan berikuti segitiga ADE dan segitiga BCE ii segitiga ADC dan segitiga BCD iii segitiga ABD dan segitiga BAC iv segitiga ABE dan segitiga CDE yang merupakan segitiga sama dan sebangun adalah....Segitiga-segitiga sebangunKESEBANGUNAN DAN KONGRUENSIGEOMETRIMatematikaRekomendasi video solusi lainnya0100Perhatikan gambar di bawah ini!Perbandingan sisi pada seg...0134Perhatikan gambar berikut. 10 cm A B F C D 4cm EDiketahui...Teks videoDisini kita mempunyai soal sebagai berikut untuk menjawab soal tersebut kita gunakan konsep dari kesebangunan dan kekongruenan syarat kesebangunan pada segitiga itu adalah yang bersesuaian sebanding kemudian yang sama besar Lalu 2 Sisi yang bersesuaian sebanding dan sudut yang diapit nya sama besar Kemudian untuk sifat kekongruenan segitiga yang panjang dan 2 sudut yang bersesuaian sama besar dan 1 Sisi yang bersesuaian sama panjang. Jika kita perhatikan trapesium abcd tersebut maka trapesium termasuk trapesium sama kaki diketahui AB dengan BC panjang dari PT ini sama dengan panjang dari Aceh karena trapesium sama kaki mempunyai diagonal yang sama kemudian besarnya sudut a = sudut besarnya sama dengan besarnya sudut C sehingga karena panjang diagonalnya sama panjang B = yang dari C kemudian panjang dari panjang dari hal ini karena panjang diagonal trapesium sama kaki sama panjangnya pasangan segitiga yang pertama yaitu segitiga ABC dan segitiga BDC Nah kita peroleh bahwa untuk nggak boleh kan sini sudut a besarnya sama dengan sudut nah. Hal ini karena sudut a dan b ini saling bertolak belakang namanya besarnya sama karena bertolak belakang kemudian kita perhatikan bahwa sudut ABC = sudut kemudian = sudut C kemudian panjang Sama dengan sama dengan titik makanya untuk pasangan yang pertama ini termasuk segitiga yang sama dan sebangun Kemudian untuk pasangan segitiga yang kedua. Tuliskan sini yaitu segitiga ABC dan segitiga BCD maka kita peroleh bahwa sudut sifat trapesium sama kaki Kemudian untuk sudut besarnya sama dengan sudut kemudian = titik-titik karena telah memenuhi syarat dari kesebangunan dan kekongruenan maka untuk pasal yang kedua Sama dan kemudian yang ketiga yaitu pasangan segitiga ABC segitiga kita peroleh bahwa besarnya sudut sama dengan besarnya sudut B kemudian besarnya sudut C = sudut D kita perhatikan bahwa panjang sisi AB = panjang sisi Nah karena sudah memenuhi syarat dari kekongruenan dan kesebangunan maka untuk yang ketiga ini juga sama dan sebangun Kemudian untuk yang keempat yaitu untuk pasangan segitiga ABC dan segitiga cde. Kalau kita perhatikan bahwa kita peroleh bahwa panjang tidak sama dengan panjang lebih panjang lah kemudian panjang dan tidak sama dengan panjang AB panjang dari pada gambar tersebut dan juga tidak sama dengan panjangnya dengan B karena tidak memenuhi sifat dari kongruensi pada segitiga maka yang bukan pasangan yang sama dan sebangun sehingga jawabannya adalah sampai jumpa soal yang nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi AntarmolekulSepertidikemukakan di atas, Contoh 4 dalam Bab II dapat digunakan dalam tahap ketiga, agar ada variasi, dimana pada tahap-tahap awal senantiasa dibahas masalah dalam kubus atau balok. Untuk kelompok siswa tertentu, Contoh 3 dan 4 dapat saling menggantikan, namun untuk kelompok siswa lain, masing-masing perlu disampaikan, sehingga Contoh 4 Ingat rumus teorema phytagoras. , dengan panjang sisi miring pada segitiga siku-siku. Rumus luas trapesium Diketahui Trapesium di atas memiliki tinggi dan dua sisi sejajar dan . Panjang dapat ditentukan dengan rumus phytagoras Perhatikan gambar berikut Panjang dan panjang . Sebelum mencari panjang , panjang harus ditentukan terlebih dahulu Diperoleh panjang Luas trapesium Dengan demikian luas trapesium adalah .
Videoyang berhubungan; Top 1: pada jajar genjang ABCD di atas panjang ad = 5 cm ,cd =13cm dan Top 2: Pada jajar genjang ABCD di bawah, panjang AD = 5 cm, CD
Pada trapesium ABCD di atas, panjang AE = 5 cm, BC = 20 cm, AD = 13 cm, dan CD = 14 cm. Hitunglah luas trapesium ABCD! 1. Pada trapesium ABCD di atas, panjang AE = 5 cm, BC = 20 cm, AD = 13 cm, dan CD = 14 cm. Hitunglah luas trapesium ABCD! 2. pada trapesium abcd panjang ae 5 cm be 10cm cd 7 cm dan de 6cm luas trapesium abcd adalah 3. pada trapesium abcd diatas, panjang ae=15 cm, bc=20 cm, ad=13 cm, dan cd=14 cm. hitunglah luas trapesium abcd! 4. Perhatikan trapesium ABCD di atas. Diketahui luas trapesium ABCD = 610 cm² dan panjang AB = 20 cm. Hitunglah keliling trapesium ABCD. 5. pada trapesium abcd panjang ae 5 cm bc 20cm ad 13cm dan ce 14cm luas trapesium abcd adalah 6. pada trapesium ABCD berikut,panjang BC 13cm,AE 5 cm, dan CD 14 cm. Hitunglah luas trapesium ABCN tersebut 7. ABCD adalah trapesium sama kaki, panjang BC = 29 CM,AE = BF,AF = 50 CM dan CF = 21 daerah ABCD ...CM² 8. pada trapesium ABCD di atas panjang AE=5cm BC=20cm AD=13cm dan DC=14cm Hitulah luas trapesium ABCD! 9. ABCD adalah trapesium sama kaki, panjang BC=29 cm,AE=BF,AF=50 cm, dan CF=21 cm. Luas daerah ABCD ... cm 10. pada trapesium abcd disamping. panjang bc = 15 cm ad = 13 cm ae = 5 cm dan cd 8 cm hitunglah luas abcd 11. Pada trapesium abcd di atas, panjang AE=10 cm BC=30 cm CD=14 cm dan AD=26 cm. Hitunglah keliling 12. ABCD adalah trapesium. Jika panjang AB = 15 cm, CD = 10 cm, DE = 8 cm dan CE = 6 cm, maka panjang AE = …. 13. Pada teorema ABCD berikut Panjang BC=20 CM, AD=13 CM, AE=5 CM, CD=14 luas trapesium ABCD? 14. pada trapesium ABCD berikut, panjang BC=20 cm, AD=13 cm, AE=5 cm, dan CD =14cm. berapa luas trapesium tersebut ? 15. Pada trapesium ABCD ,panjang BC= 20 cm, AD= 13 cm, AE= 5 cm, dan CD= 14 cmhitunglah luas trapesium ABCD 16. Diketahui trapesium ABCD dengan ukuran seperti pada gambar di atasJika AE - 4 cm maka luas daerah trapesium ABCD adalah126 cmb. 252 cm108 cm540 cm552 cm 17. Perhatikan trapesium ABCD di atas. Diketahui luas trapesium ABCD = 610 cm danpanjang AB = 20 cm. Hitunglah keliling trapesium 18. ABCD adalah trapesium sama kaki, panjang BC =29 cm, AE=BF,AF=50cm, dan CF=21cm, Luas daerah ABCD adalah.. 19. Pada trapesium sembarang ABCD. panjang AE 5cm BC 20CM AD 13cm CD 14 cm hitunglah luas trapesium 20. Pada trapesium ABCD berikut, panjang BC=20 cm, AD=13 cm, AE=5 cm, dan CD =14cm. berapa luas trapesium tersebut 21. Abcd adalah trapesium dengan e pada ad dan f pada bc bila ef = 9cm dan ab =5 cm sedangkan ae Ed= 25 maka panjang CD adalah 22. Trapesium ABCD memiliki panjang BC=30 cm, AD=26 cm, AE=10 cm, dan CD =20 cm. Luas trapesium ABCD adalah ... cm²816800716700 23. teman-teman bantuin saya ya, tapi pakai cara ya pada trapesium ABCD berikut, panjang BC=20 cm , AD=13 cm, AE=5 cm, dan CD=14 cm, hitunglah luas trapesium ABCD tersebut . trapesium nya dicari trapesium sama kaki & sama sisi 24. pada trapesium abcd disamping. panjang bc = 15 cm ad = 13 cm ae = 5 cm dan cd 4 cm hitunglah luas abcd copyreport asalreport 25. pada trapesium ABCD di atas panjang AE 5cm BC 20cm AD 13 cm dan CD 14cm hitunglah luas trapesium ABCD 26. panjang ABCD, panjang AE = 5 cm , BE = 10cm , CD = 7cm dan DE = 6cm . luas trapesium ABCD adalah ...... cm2 27. panjang AB=25cm,AE=5cm dan CD=15cm sedangkan tinggi trapesium adalah12cm, hitung trapesium ABCD! trapesium ABCD 28. sebuah trapesium ABCD di bawah ini dimana panjang AB=22 cm, panjang CD=10 cm, panjang DE = 8 cm dan panjang AE = 6cm. Hitunglah a. Keliling trapesium ABCD b. Luas trapesium ABCD 29. Jika AE = FB = 4 cm maka luas daerah trapesium ABCD adalah 30. Diketahui Garis EF Sejajar AB Pada Trapesium ABCD Seperti Gambar Dibawah Panjang Garis AE Adalah ... CM Jawaban dengan langkah-langkahdiketahuipanjang 5 cmBC=20 cmAD 13 cmCD 14 cmditanyakan l?l=p×BC×AD×CD=5×20×13×14= cm 2. pada trapesium abcd panjang ae 5 cm be 10cm cd 7 cm dan de 6cm luas trapesium abcd adalah ae = 5 cmbe = 10 cmcd = 7 cmde = 6 cmab = ae + be == 5 + 10= 15 cmluas = ab + cd x de 2= 15 + 7 x 6 2= 22 x 3= 66 cm²luas trapesium= [tex] \frac{1}{2} [/tex]jumlah sisi sejajar ×tinggi =[tex] \frac{1}{2} [/tex]7+15×6 = 66 cm² 3. pada trapesium abcd diatas, panjang ae=15 cm, bc=20 cm, ad=13 cm, dan cd=14 cm. hitunglah luas trapesium abcd! Jawaban[tex]DE = \sqrt{ {13}^{2} - {5}^{2} } = \sqrt{169 - 25} = \sqrt{144} = 12 \ cm[/tex][tex]AB = 5 + 14 + \sqrt{ {20}^{2} - {12}^{2} } = 19 + \sqrt{400 - 144} = 19 + \sqrt{256} = 19 + 16 = 35 \ cm[/tex][tex]luas \ trapesium = \frac{jumlah \ sisi \ sejajar \times tinggi}{2} = \frac{14 + 35 \times 12}{2} = \frac{49 \times 12}{2} = \frac{588}{2} = 294 \ {cm}^{2} [/tex] 4. Perhatikan trapesium ABCD di atas. Diketahui luas trapesium ABCD = 610 cm² dan panjang AB = 20 cm. Hitunglah keliling trapesium ABCD. 20x4=80610+80= 690 Maaf kalau salah mungkin caranya di tambahin lalu di bagi itu tdk ad tinggi nya ya? L=1/2a+b×t =1/214+14×5 =1/2×28×5 =14×5=70maaf kalau salah 7. ABCD adalah trapesium sama kaki, panjang BC = 29 CM,AE = BF,AF = 50 CM dan CF = 21 daerah ABCD ...CM² jawabannya 1050 maaf kalo salahsisi BF=AEsisi BF=[tex] 29^{2} [/tex]-[tex] 21^{2} [/tex]=841-441=√400=20cmluas trapesium=a+b×t=DC+AB×FC=30+70×21=100×21=[tex] \frac{2100}{2} [/tex]=1050cm²semoga membantu 8. pada trapesium ABCD di atas panjang AE=5cm BC=20cm AD=13cm dan DC=14cm Hitulah luas trapesium ABCD! 1/2x13+20x5. =1/2x33x5. =1/2x165. =8,25 9. ABCD adalah trapesium sama kaki, panjang BC=29 cm,AE=BF,AF=50 cm, dan CF=21 cm. Luas daerah ABCD ... cm B2 = C2 –A2 = 29 – 21 =841 – 441 = 400 B = Akar pangkat dua dari 400 B = 20FB = 20 AF - FB = EF50 - 20 = 30 EF sejajar dengan DC DC= 30cm Luas trapesium sama kaki = ½ a+b . t =½ 30 + 70 . 21 =½ . 100 .21 = = 105 cm2 Jawabanrumus trapesium sama kakiad+bc×t- 2Penjelasan dengan langkah-langkahad = 13cmbc = 15cmt = ae = 5cm13+15×5- 2= 28×5/2 = 70cm² 11. Pada trapesium abcd di atas, panjang AE=10 cm BC=30 cm CD=14 cm dan AD=26 cm. Hitunglah keliling Jawabkeliling trapesium = 112 cmPenjelasan dengan langkah-langkahkeliling trapesium = AD + DC + CB + BF + EF + AE = 26 + 14 + 30 + BF + 14 + 10untuk mencari nilai BF, kita harus mengetahui nilai ED.Nilai ED = √AD² - AE² = √26² - 10² = √676 - 100 = √576Nilai ED = 24 cmNilai CF = Nilai ED = 24 cmMencari nilai BF;Nilai BF = √BC² - CF² = √30² - 24² = √900 - 576 = √324Nilai BF = 18 cm Maka;keliling trapesium = AD + DC + CB + BF + EF + AE = 26 + 14 + 30 + 18 + 14 + 10 = 112 cmJadi, keliling trapesium = 112 cm 12. ABCD adalah trapesium. Jika panjang AB = 15 cm, CD = 10 cm, DE = 8 cm dan CE = 6 cm, maka panjang AE = …. Sisi alas adalah AB=15sisi atas adalah CD=10DE danCE adalah sisi alas dan tinggi dari segitiga siku siku DEC siku-siku di Ejarak AE adalah 9 13. Pada teorema ABCD berikut Panjang BC=20 CM, AD=13 CM, AE=5 CM, CD=14 luas trapesium ABCD? maaf kalau salah,, itu jawabannya pilih salah satu sajaaku buat dua soalnya bingung gambar 14. pada trapesium ABCD berikut, panjang BC=20 cm, AD=13 cm, AE=5 cm, dan CD =14cm. berapa luas trapesium tersebut ? AE?? E nya ada di mana??????13+20x5/2=165/2=82,5 kalau salah maaf,tapi rumus trapesium adalah jumlah sisi sejajar kali tinggi perdua,jika tinggi 5 20+13×5÷2 =36×5÷2 =180÷2 =90 16. Diketahui trapesium ABCD dengan ukuran seperti pada gambar di atasJika AE - 4 cm maka luas daerah trapesium ABCD adalah126 cmb. 252 cm108 cm540 cm552 cm tolong jadikan jawaban tercerdas ya; jangan lupa follow hehe terima kasih 17. Perhatikan trapesium ABCD di atas. Diketahui luas trapesium ABCD = 610 cm danpanjang AB = 20 cm. Hitunglah keliling trapesium Jawaban140 cmPenjelasan dengan langkah-langkahK persegi=4×s=4×20=80 cmK segitiga=3×s=3×20=60 cmK persegi+K segitiga=80+60=140 cm 18. ABCD adalah trapesium sama kaki, panjang BC =29 cm, AE=BF,AF=50cm, dan CF=21cm, Luas daerah ABCD adalah.. 29cm×21cm= 609 persegi Jawaban5 kali 30 kali 13 kali 14 maap kalau salah5 kali 20 kali 13 kali 14 per 2 Sorry kalo salah 20. Pada trapesium ABCD berikut, panjang BC=20 cm, AD=13 cm, AE=5 cm, dan CD =14cm. berapa luas trapesium tersebut Luas Trapesium = Jumlah sisi sejajar x tinggi / 2 = BC x AD / 2 = 20 x 13 / 2 = 260 / 2 = 130 jawabannya ada di foto 22. Trapesium ABCD memiliki panjang BC=30 cm, AD=26 cm, AE=10 cm, dan CD =20 cm. Luas trapesium ABCD adalah ... cm²816800716700 JawabMari saya bantu ya dekPenjelasan dengan langkah-langkahKelas 6 SDMapel MatematikaBab -Kata kunci - 23. teman-teman bantuin saya ya, tapi pakai cara ya pada trapesium ABCD berikut, panjang BC=20 cm , AD=13 cm, AE=5 cm, dan CD=14 cm, hitunglah luas trapesium ABCD tersebut . trapesium nya dicari trapesium sama kaki & sama sisi Trapesium sama kaki rumus 1/2 x 13+20 x t = 1/2 x 13+20 x 8 = 1/2 x 36 x 8 = 1/2 x 288 = 144cm2 maaf jika salah ,, smga membantu Penjelasan dengan langkah-langkahde = √ad² - ae²de = √13² - 5²de = √169 - 25de = √144de = 12 cmbf = √bc² - cf²karena cf = de makabf = √15² - 12²bf = √225 - 144bf = √81bf = 9 cmab = ae + ef + bfab = 5 cm + 4 cm + 9 cmab = 18 cmL abcd = cd + ab/2 x deL abcd = 4 + 18/2x 12 = 11 x 12 = 132 cm²DE = √13² - 5²= √1313 - 55= √169 - 25= √144= √1212= √12²= 12 CMBF = √15² - 12²= √1515 - 1212= √225 - 144= √81= √9²= 9 CMAB = 5 + 4 + 9= 9 + 9= 18 CMMAKA L = 4 + 18/212= 22/212= 11/112= 1112= 132 CM² kalo gak salah 20 × 5 13+14 maaf kalo salah 26. panjang ABCD, panjang AE = 5 cm , BE = 10cm , CD = 7cm dan DE = 6cm . luas trapesium ABCD adalah ...... cm2 L = 1/2 x s₁ + s₂ x t= 1/2 7+ 5+7+5 x 6= 1/2 7+17 x 6= 24 x 3= 72 27. panjang AB=25cm,AE=5cm dan CD=15cm sedangkan tinggi trapesium adalah12cm, hitung trapesium ABCD! trapesium ABCD a. kll trapesium= sisi+sisi+sisi+sisi =25+5+15+12 =57 cmb. luas trapesium =1/2×25+5 ×12 = 28. sebuah trapesium ABCD di bawah ini dimana panjang AB=22 cm, panjang CD=10 cm, panjang DE = 8 cm dan panjang AE = 6cm. Hitunglah a. Keliling trapesium ABCD b. Luas trapesium ABCD a. Keliling trapesium ABCD Untuk menghitung keliling, kita harus mengetahui keempat sisinya. Dalam hal ini, trapesiumnya adalah jenis trapesium sama kaki dan sisi yang belum diketahui adalah sisi AD dan CB. Karena trapesium sama kaki, jadi kita cukup mengetahui AD maka CB akan sama nilainya dengan AD. AD^2 = AE^2 + DE^2 AD^2 = 6^2 + 8^2 AD = √100 AD = 10 cm Keliling = AB + CD + 2 AD Keliling = 22 + 10 + 210 Keliling = 52 cm b. Luas trapesium ABCD Luas = ½ a + b x t Luas = ½ 22 + 10 x 8 Luas = 16 cm x 8 cm Luas = 128 cm2 29. Jika AE = FB = 4 cm maka luas daerah trapesium ABCD adalah Diket AE = FB = 4cm AC = 15cm ED = FC = 9cmDit = ...?Jwb cari panjang AF dg = AC² - FC² = 225 - 81 = 144AF = √144 = 12 DC = AF - AE = 12 - 4 = 8cmPanjang AB = AF + FB = 12 + 4 = 16cmLuas = DC+AB * ED ÷ 2L = 8+16 * 9 ÷ 2L = 24 * 9 ÷ 2L = 108cm² CSemoga membantu 30. Diketahui Garis EF Sejajar AB Pada Trapesium ABCD Seperti Gambar Dibawah Panjang Garis AE Adalah ... CM Caranya EF=15 cm ED=6 cmAE=EF-ED =15-6cm= 9 cmJANGAN LUPA FOLLOW YA
. 183 359 50 472 452 421 225 465